Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Mar Environ Res ; 198: 106489, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38640688

RESUMO

Comprehending the potential effects of environmental variability on bivalves aquaculture becomes crucial for its sustainability under climate change scenarios, specially in the Humboldt Current System (HCS) where upwelling intensification leading to frequent hypoxia and acidification is expected. In a year-long study, Pacific oysters (Magallana gigas) were monitored at two depths (1.5m, 6.5m) in a bay affected by coastal upwelling. Surface waters exhibited warmer, well-oxygenated conditions and higher chlorophyll-a concentrations, while at depth greater hypoxia and acidification events occur, especially during upwelling. Surface cultured oysters exhibited 60 % larger size and 35% greater weight due to faster growth rate during the initial month of cultivation. The condition index (CI) increases in surface oysters after 10 months, whereas those at the bottom maintain a lower index. Food availability, temperature, and oxygen, correlates with higher growth rates, while pH associates with morphometric variables, indicating that larger oysters tend to develop under higher pH. Increased upwelling generally raises CI, but bottom oysters face stressful conditions such as hypoxia and acidification, resulting in lower performance. However, they acclimate by changing the organic composition of their shells and making them stronger. This study suggests that under intensified upwelling scenario, oysters would grow slowly, resulting in smaller sizes and lower performance, but the challenges may be confronted through complex compensation mechanisms among biomass production and maintenance of the shell structure and function. This poses a significant challenge for the sustainability of the aquaculture industry, emphasizing the need for adaptive strategies to mitigate the effects of climate change.

2.
Ecol Evol ; 14(3): e10704, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455142

RESUMO

Top-down and bottom-up factors and their interaction highlight the interdependence of resources and consumer impacts on food webs and ecosystems. Variation in the strength of upwelling-mediated ecological controls (i.e., light availability and herbivory) between early and late succession stages is less well understood from the standpoint of influencing algal functional group composition. We experimentally tested the effect of light, grazing, and disturbance on rocky intertidal turf-forming algal communities. Studies were conducted on the South Island of New Zealand at Raramai on the east coast (a persistent downwelling region) and Twelve Mile Beach on the west coast (an intermittent upwelling region). Herbivory, light availability, and algal cover were manipulated and percent cover of major macroalgal functional groups and sessile invertebrates were measured monthly from October 2017 to March 2018. By distinguishing between algal functional groups and including different starting conditions in our design, we found that the mosaic-like pattern of bare rock intermingled with diverse turf-forming algae at Twelve Mile Beach was driven by a complex array of species interactions, including grazing, predation, preemptive competition and interference competition, colonization rates, and these interactions were modulated by light availability and other environmental conditions. Raramai results contrasted with those at Twelve Mile Beach in showing stronger effects of grazing and relatively weak effects of other interactions, low colonization rates of invertebrates, and light effects limited to crustose algae. Our study highlights the potential importance of an upwelling-mediated 3-way interaction among herbivory, light availability, and preemption in structuring contrasting low rocky intertidal macroalgal communities.

3.
Mar Environ Res ; 196: 106380, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341980

RESUMO

The largest continental shelf Oxygen Minimum Zone (OMZ) in the world is formed along the Indian western shelf in the eastern Arabian Sea during the Southwest Monsoon [(SWM); June-September], which is a natural pollution event associated with the coastal upwelling. This study examines the composition, abundance, and distribution of copepods during the Northeast Monsoon [(NEM); November to February] and SWM in 50 m depth zones along the Indian western shelf in the eastern Arabian Sea. The NEM was characterised by warm, stratified, and low-salinity waters in the southeast Arabian Sea and cold, high-salinity, and well-mixed waters in the northeastern Arabian Sea. During the SWM, cold and Dissolved Oxygen (DO) deficient waters (<22 µM/0.5 ml L-1), which are the signs of coastal upwelling, were evident all along the study zone, but with more intensity off Kochi, Mangalore, and Goa in the south than off Mumbai and Okha in the north. The zooplankton total biomass and abundance showed seasonality with a general decrease during the SWM (av. 3.68 ± 1.29 ml m-3 and av. 5711 ± 3096 Ind. m-3, respectively) compared to the NEM (av. 7.37 ± 2.17 ml m-3 and av. 14,473 ± 4966 Ind. m-3, respectively). At the same time, the abundance of Polychaeta and Siphonophora showed an increase during the SWM (av. 1187 ± 1055 Ind. m-3 and av. 169 ± 119 Ind. m-3, respectively), probably a result of the DO deficient waters associated with upwelling. Two striking seasonal features in Copepoda community were evident in this study: (a) a compositional shift from Cyclopoida dominant during the NEM to Calanoida dominant during the SWM, and (b) the coastal OMZ along the Indian western shelf during the SWM was dominated by Calanoida, which include oceanic OMZ species such as Pleuromamma indica, Lucicutia flavicornis, L.paraclausii, Eucalanus elongatus, Subeucalanus pileatus, S.subcrassus, and Clausocalanus furcatus. This forms a clear imprint for the extension of the oceanic OMZ into nearshore waters during the SWM due to coastal upwelling.


Assuntos
Copépodes , Animais , Oxigênio , Oceanos e Mares , Biomassa , Índia , Estações do Ano , Água do Mar
4.
Harmful Algae ; 132: 102583, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38331541

RESUMO

The bays of Tongoy and Guanaqueros are located in the Humboldt Current system, where Argopecten purpuratus has been the subject of intense aquaculture development. These bays lie in one of the most productive marine ecosystems on Earth and are dominated by permanent coastal upwelling at Lengua de Vaca Point and Choros Point, one of the three upwelling centers on the Chilean coast. Significantly, this productive system experiences a high recurrence of harmful algal bloom (HAB) events. This paper examines 9-year (2010-2018) samples of three toxic microalgal species collected in different monitoring programs and research projects. During this period, nine HAB events were detected in Guanaqueros Bay and 14 in Tongoy Bay. Among these, three HAB events were produced simultaneously in both bays by Pseudo-nitzschia australis, and two events produced simultaneously were detected in one bay by Alexandrium spp. and the other by Dinophysis acuminata. Before El Niño 2015-16, there were more HAB events of longer duration by the three species. Since El Niño, the number and duration of events were reduced and only produced by P. australis. HAB events were simulated with the FVCOM model and a virtual particle tracker model to evaluate the dynamics of bays and their relationship with HAB events. The results showed retention in bays during the relaxation conditions of upwelling and low connectivity between bays, which explains why almost no simultaneous events were recorded.


Assuntos
Dinoflagelados , Proliferação Nociva de Algas , Baías , Ecossistema , Chile
5.
Mar Environ Res ; 193: 106270, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38011827

RESUMO

Upwelling phenomena alter the physical and chemical parameters of the sea's subsurface waters, producing low levels of temperature, pH and dissolved oxygen, which can seriously impact the early developmental stages of marine organisms. To understand how upwelling can affect the encapsulated development of the gastropod Acanthina monodon, capsules containing embryos at different stages of development (initial, intermediate and advanced) were exposed to upwelling conditions (pH = 7.6; O2 = 3 mg L-1; T° = 9 °C) for a period of 7 days. Effects of treatment were determined by estimating parameters such as time to hatching, number of hatchlings per capsule, percentage of individuals with incomplete development, and shell parameters such as shell shape and size, shell strength, and the percentage of the organic/inorganic content. We found no significant impacts on hatching time, number of hatchlings per capsule, or percentage of incomplete development in either the presence or absence of upwelling, regardless of developmental stage. On the other hand, latent effects on encapsulated stages of A. monodon were detected in embryos that had been exposed to upwelling stress in the initial embryonic stage. The juveniles from this treatment hatched at smaller sizes and with higher organic content in their shells, resulting in a higher resistance to cracking 30 days after hatching, due to greater elasticity. Geometric morphometric analysis showed that exposure to upwelling condition induced a change in the morphology of shell growth in all post-hatching juveniles (0-30 days), regardless of embryonic developmental stage at the time of exposure. Thus, more elongated shells (siphonal canal and posterior region) and more globular shells were observed in newly hatched juveniles that had been exposed to the upwelling condition. The neutral or even positive upwelling exposure results suggests that exposure to upwelling events during the encapsulated embryonic phase of A. monodon development might not have major impacts on the future juvenile stages. However, this should be taken with caution in consideration of the increased frequency and intensity of upwelling events predicted for the coming decades.


Assuntos
Gastrópodes , Humanos , Animais , Água do Mar/química , Temperatura , Oxigênio , Desenvolvimento Embrionário
6.
Harmful Algae ; 129: 102522, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951621

RESUMO

Domoic acid produced by toxigenic Pseudo-nitzschia species is the main toxin threat from harmful algal blooms in Monterey Bay and the larger California Current region on the West Coast of the United States. Toxin monitoring in Monterey Bay includes a long-running time series of weekly measurements of domoic acid from water samples, sentinel mussels, and solid phase adsorption toxin tracking (SPATT) at the Santa Cruz Municipal Wharf (SCW). The SCW sampling site is unusual because of its position in the Monterey Bay upwelling shadow in the north bay. The upwelling shadow circulation pattern has been previously characterized as a bloom incubator for dinoflagellates, but it has not yet been analyzed in the context of long-term monitoring methods. In data collected from the SCW from 2012 - 2020, domoic acid from water samples and sentinel mussels had a different temporal distribution than domoic acid from SPATT. Here we explore the discrepancy through a seasonal and non-seasonal analysis including physical oceanography of the region. Results show that domoic acid from water samples and sentinel mussels are related to seasonal upwelling and Pseudo-nitzschia blooms. Domoic acid monitored by SPATT, on the other hand, is correlated to anomalous upwelling and warmer than usual temperatures during the relaxation season. This work builds on previous analyses of the SCW time series and contributes to understanding of the circulation of dissolved toxin in the environment. Results lend rationale for the continuation of rigorous domoic acid monitoring in Monterey Bay and encourage stakeholders to consider local physical dynamics when interpreting toxin monitoring data.


Assuntos
Baías , Diatomáceas , Estações do Ano , Ácido Caínico/análise , Água
7.
Mar Pollut Bull ; 197: 115696, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897966

RESUMO

Seasonal upwelling and the associated incursion of hypoxic waters into the coastal zone is a widely studied topic over different upwelling zones. However, its persistence or variations over short time scales are poorly addressed. The present study, therefore, brings out a first report on hourly variations in the temperature, salinity and dissolved oxygen recorded by an environmental data buoy equipped with sensors, deployed in the nearshore waters of Alappuzha (southeastern Arabian Sea) from April to August 2022. The characteristic feature of the Alappuzha coast is the development of mud banks during the southwest monsoon, providing a tranquil environment suitable for continuous sensor-based measurements when the sea remains turbulent elsewhere. The results showed that despite an advance in the upwelling intensity, there is a significant variation in the oxygen concentration in the study domain on a diurnal scale. In general, the nearshore region was under hypoxia during the first half of the day (00:00 to 12:00 h), which increased steadily to reach normoxic and supersaturated levels during the rest of the day (12:00 to 24:00 h). Statistical analysis showed that winds significantly correlate to the coastal environment's subsurface oxygen concentration. During the morning hours, the wind was weak, and the water column remained stratified over the subsurface hypoxic water layer. The situation changed in the afternoon (12:00 h onwards), as there was a steady increase in the local wind speed (>5 m/s), which was sustained during the rest of the day. A local wind speed >5 m/s can disturb the stratification and enhance the mixing process from 12:00 to 24:00 h. The total kinetic energy of 11.5 J/m3 is the threshold for this oxygen supersaturation. These findings emphasize the role of wind-induced mixing in alleviating coastal hypoxia, highlighting the need for further biogeochemical and ecological investigations into the impacts of alternating oxic-hypoxic conditions in nearshore waters.


Assuntos
Água , Vento , Humanos , Estações do Ano , Hipóxia , Oxigênio
8.
Sci Total Environ ; 905: 167150, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37722428

RESUMO

Mariculture algae may present a crucial part of ocean-based solutions for climate change, with the ability to sequester carbon and remove nutrients. However, the expansion of mariculture algae faces multiple challenges. Here, we measure the changes in algae derived carbon sinks and nitrogen (N) and phosphorus (P) removal between 2010 and 2020 in Shandong Province, China. We further identify the key driving factors, namely area, algal species proportion, and yield, that influence the changes. The results show that algae derived carbon sinks and nutrient removal growth rates in Shandong Province have slowed significantly since 2014, mainly due to area limitations, laver-oriented species change, and unstable yields. Artificial upwelling (AU) has the potential to enhance the yield and subsequently offset the loss of carbon sinks and nutrient removal caused by negative driving factors. Scenario analysis indicates that a complete deployment of AU by 2030 will offset up to a 44.52 % decrease in the mariculture algae area, or a 72.57 % increase in the laver share of the algal species combination compared to 2020. Similar conclusions are reached regarding the role of AU in N and P removal. This study also identifies ancillary challenges such as low energy efficiency and high costs faced by applying AU.


Assuntos
Sequestro de Carbono , Nitrogênio , Fósforo , Carbono , Nutrientes
9.
Mar Pollut Bull ; 195: 115447, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716129

RESUMO

This study analyzed the concentrations of 15 (Al, As, Ba, Cd, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, V, Zn) toxicologically important trace elements in the livers of 110 green turtles stranded in two areas of the Brazilian coast. These areas are essential for the refuge, feeding, and reproduction of the species, and the information obtained is intended to support the development of conservation strategies. Higher concentrations were observed in the Região dos Lagos, RJ in almost all elements, except for Al, Mo, Pb, and V. This location showed statistically higher differences in the concentrations of Cd (4.66 ± 2.33 µg.g-1), Fe (846.62 ± 583.06 µg.g-1), and Zn (27.17 ± 10.90 µg.g-1). The differences in trace element concentration patterns between the two study areas are likely influenced by multiple factors, including the bioavailability of trace elements, oceanic upwelling events, anthropogenic activities, habitat characteristics, and organism-specific metabolic processes.

10.
Mar Environ Res ; 191: 106182, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37729853

RESUMO

This study investigates the distribution, structural properties, and potential impacts of oceanic processes on microplastics (MPs) in the Taiwan Strait (TWS) and surrounding seas. With an average of 174 particles/m3, the MP abundance in surface seawater ranged from 84 to 389 particles/m3. MP abundance ranged from 16 to 382 particles/kg in sediments, with a median of 121 particles/kg. Fragment and fiber were the two most frequently detected shapes. These MPs were found to be composed primarily of carbon and oxygen elements at 70-90% levels using energy-dispersive X-ray spectroscopy. Additionally, several examples had trace levels of metallic components. Black was the color that MPs saw the most often out of all the hues. The two main types of polymers are polyester and rayon, and their production is influenced by home sewage discharge and synthetic fiber production. The main routes of MP transport were land source input, riverine input, and oceanic currents. This study showed that salinity affects the distribution of MPs, with high-salinity seawater serving to saturate their presence. On the other hand, upwelling raises MP concentrations by bringing nutrients from the deep to the surface. Furthermore, it has been discovered that the dilution of the Pearl River plume increases the MP prevalence in the region. The South China Sea Warm Current had the highest lateral MPs transport flux (2.1 × 1014 particles/y), which was followed by the Taiwan Strait Current area (1.0 × 1014 particles/y) and the Guangdong coastal areas (8.6 × 1013 particles/y). In sediments, the MP prevalence was inversely correlated with particle size. Flocculation processes probably made it easier for MPs to travel down the water column and deposit themselves on the aquatic substrate. Although the relationship between MPs, total organic carbon, and total organic nitrogen was not correlated, a favorable trend showed that MPs may discreetly contribute to carbon storage in coastal sediment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Taiwan , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Oceanos e Mares , Carbono
11.
Sci Total Environ ; 902: 165900, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37572507

RESUMO

Low pH conditions, associated with ocean acidification, represent threats to many commercially and ecologically important organisms, including bivalves. However, there are knowledge gaps regarding factors explaining observed differences in biological responses to low pH in laboratory experiments. Specific sources of local adaptation such as upwelling exposure and the role of experimental design, such as carbonate chemistry parameter changes, should be considered. Linking upwelling exposure, as an individual oceanographic phenomenon, to responses measured in laboratory experiments may further our understanding of local adaptation to global change. Here, meta-analysis is used to test the hypotheses that upwelling exposure and experimental design affect outcomes of individual, laboratory-based studies that assess bivalve metabolic (clearance and respiration rate) responses to low pH. Results show that while bivalves generally decrease metabolic activity in response to low pH, upwelling exposure and experimental design can significantly impact outcomes. Bivalves from downwelling or weak upwelling areas decrease metabolic activity in response to low pH, but bivalves from strong upwelling areas increase or do not change metabolic activity in response to low pH. Furthermore, experimental temperature, exposure time and magnitude of the change in carbonate chemistry parameters all significantly affect outcomes. These results suggest that bivalves from strong upwelling areas may be less sensitive to low pH. This furthers our understanding of local adaptation to global change by demonstrating that upwelling alone can explain up to 49 % of the variability associated with bivalve metabolic responses to low pH. Furthermore, when interpreting outcomes of individual, laboratory experiments, scientists should be aware that higher temperatures, shorter exposure times and larger changes in carbonate chemistry parameters may increase the chance of suppressed metabolic activity.


Assuntos
Bivalves , Água do Mar , Animais , Água do Mar/química , Concentração de Íons de Hidrogênio , Projetos de Pesquisa , Bivalves/metabolismo , Carbonatos/metabolismo
12.
J Phycol ; 59(5): 908-925, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37596817

RESUMO

Crustose coralline algae (CCA) are important components of reef ecology contributing to reef framework construction. However, little is known about how seasonal upwelling systems influence growth and calcification of tropical CCA. We assessed marginal and vertical growth and net calcification rates of two dominant but morphologically different reef-building CCA, Porolithon antillarum and Lithophyllum cf. kaiseri, in a shallow coral reef of the Colombian Caribbean during upwelling and non-upwelling seasons. Growth and calcification rates varied seasonally with higher values during the upwelling compared to the non-upwelling (rainy) season. Annual vertical growth showed rates of 4.48 ± 1.58 and 4.31 ± 2.17 mm · y-1 , net calcification using crust growth estimates of 0.75 ± 0.30 g and 0.68 ± 0.60 g CaCO3 · cm-2 · y-1 and net calcification using the buoyant weight method of 1.49 ± 0.57 and 0.52 ± 0.11 g CaCO3 · cm-2 · y-1 in P. antillarum and L. kaiseri, respectively. Seawater temperature was inversely related with growth and calcification; however, complex oceanographic interactions between temperature and resource availability (e.g., light, nutrients, and CO2 ) are proposed to modulate CCA vital rates. Although CCA calcification rates are comparable to hard corals, CCA vertical accretion is much lower, suggesting that the main contribution of CCA to reef construction is via cementation processes. These results provide baseline data on CCA in the region and generate useful information for monitoring the impacts of environmental changes on tropical upwelling environments.

13.
Sci Total Environ ; 898: 166391, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37597551

RESUMO

The Mauritania-Senegalese upwelling region (MSUR), the southernmost region of the Canary current upwelling system, is well-known for its coastal productivity and the key role it plays in enriching the oligotrophic open ocean through the offshore transport of the upwelled coastal waters. The great ecological and socio-economic importance makes it necessary to evaluate the impact of climate change on this region. Hence, our main objective is to examine the climate change signal over the MSUR with a high resolution regional climate system model (RCSM) forced by the Earth system model MPI-ESM-LR under RCP8.5 scenario. This RCSM has a regional atmosphere model (REMO) coupled to a global ocean model (MPIOM) with high-resolution in the MSUR, which allows us to evaluate the wind pattern, the ocean stratification, as well as the upwelling source water depth, while maintaining an ocean global domain. Under RCP8.5 scenario, our results show that the upwelling favourable winds of the northern MSUR are year-round intensified, while the southern MSUR presents a strengthening in winter and a weakening in March-April. Along with changes in the wind pattern, we found increased ocean stratification in the spring months. In those months southern MSUR presents a shallowing of the upwelling source water depth associated to changes in both mechanisms. However, in winter the whole MSUR shows a deepening of the upwelling source water depth due to the intensification of the upwelling favourable winds, with the increased ocean stratification playing a secondary role. Our results demonstrate the need to evaluate the future evolution of coastal upwelling systems taking into account their latitudinal and seasonal variability and the joint contribution of both mechanisms.

14.
Mar Pollut Bull ; 194(Pt B): 115310, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37542927

RESUMO

The study assessed the Cochin estuary and adjacent coastal Arabian Sea for their seasonal variation in nitrate (NO3-) and ammonium (NH4+) uptake rates by total and nano + picoplankton using the 15N tracer technique. The results suggested that the NO3- and NH4+ uptake rates in the Cochin estuary are higher than those in the adjacent coastal Arabian Sea. NO3- and NH4+ uptake rates in the nearshore stations in the off Cochin station were high, indicating the influence of the eutrophic estuary. NO3- and NH4+ uptake rates conducted in off Mangalore transect were significantly lower than those of the off Cochin as it does not have an exchange with eutrophic systems. The nano + picoplankton's contribution to the total DIN uptake rates in the Cochin estuary was 77-98 %, indicating the relevance of nano + pico phytoplankton in the N cycling of the region.


Assuntos
Estuários , Nitrogênio , Estações do Ano , Nitrogênio/análise , Fitoplâncton , Nitratos/análise
15.
Harmful Algae ; 127: 102467, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37544669

RESUMO

Along the west coast of the United States, highly toxic Pseudo-nitzschia blooms have been associated with two contrasting regional phenomena: seasonal upwelling and marine heatwaves. While upwelling delivers cool water rich in pCO2 and an abundance of macronutrients to the upper water column, marine heatwaves instead lead to warmer surface waters, low pCO2, and reduced nutrient availability. Understanding Pseudo-nitzschia dynamics under these two conditions is important for bloom forecasting and coastal management, yet the mechanisms driving toxic bloom formation during contrasting upwelling vs. heatwave conditions remain poorly understood. To gain a better understanding of what drives Pseudo-nitzschia australis growth and toxicity during these events, multiple-driver scenario or 'cluster' experiments were conducted using temperature, pCO2, and nutrient levels reflecting conditions during upwelling (13 °C, 900 ppm pCO2, replete nutrients) and two intensities of marine heatwaves (19 °C or 20.5 °C, 250 ppm pCO2, reduced macronutrients). While P. australis grew equally well under both heatwave and upwelling conditions, similar to what has been observed in the natural environment, cells were only toxic in the upwelling treatment. We also conducted single-driver experiments to gain a mechanistic understanding of which drivers most impact P. australis growth and toxicity. These experiments indicated that nitrogen concentration and N:P ratio were likely the drivers that most influenced domoic acid production, while the impacts of temperature or pCO2 concentration were less pronounced. Together, these experiments may help to provide both mechanistic and holistic perspectives on toxic P. australis blooms in the dynamic and changing coastal ocean, where cells interact simultaneously with multiple altered environmental variables.


Assuntos
Diatomáceas , Ácido Caínico/toxicidade , Água , Meio Ambiente
16.
Environ Monit Assess ; 195(8): 948, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37442838

RESUMO

We studied the community composition of microzooplankton (MZP) from the surface waters off Candolim, Goa. The MZP communities were examined for the year 2013, covering different seasons and four stations (Near-shore: G3 & G4, offshore: G5 & G6). A total of 30 species belonging to 24 genera were recorded, which include loricate ciliates (LC: 14 species of 13 genera), aloricate ciliates (ALC: 5 species of 3 genera), heterotrophic dinoflagellates (HDS: 11 species of 8 genera), and copepod nauplii. The MZP abundance in the coastal waters varied spatially irrespective of different seasons, with higher abundance in the offshore stations (G5 & G6, 38-127 cells L-1) and lower abundance in the near-shore stations (G3 & G4, 20-97 cells L-1). The MZP community composition showed the dominance of HDS (16-85%) in the near-shore stations during most of the seasons and inferiority during NEM (16-18%). Moreover, all the coastal waters (near and offshore) were dominated by HDS (58-85%) during spring inter-monsoon. The dominant species of HDS were Dinophysis apicata, Dinophysis caudata, Prorocentrum micans, Protoperidinium breve, Protoperidinium latistriatum, and Protoperidinium granii. The statistical analysis (Canonical correspondence analysis and Spearman's rank correlation) depicts that the MZP abundance and community composition were mainly controlled by salinity (r = 0.4-0.7). Whereas the dominance of HDS in the coastal waters could be the reason for its mixotrophic nature and diverse feeding mechanism. Thus, a strong positive correlation between the HDS and LC (r = 0.73-0.92) showed the feeding ability of HDS in their relative community.


Assuntos
Copépodes , Dinoflagelados , Animais , Monitoramento Ambiental , Estações do Ano , Salinidade , Fitoplâncton
17.
Mar Environ Res ; 190: 106099, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454508

RESUMO

Assessing spatial variability in biodiversity and its relationships with potential drivers is necessary for understanding and predicting changes in ecosystems. Here, we evaluated spatial patterns in sessile macrobenthic communities in rocky intertidal habitats along the southwestern Atlantic (SE Brazil), spanning over 500 km of coastline. We applied a rapid-survey approach focusing on the main space occupiers and habitat-forming taxa. We partitioned community variance into spatial scales ranging from metres to hundreds of kilometres and assessed whether community patterns were associated with variation in shore topography, nearshore ocean, and human influence. The communities from the mid-midlittoral level exhibited equivalent variation (31-35%) at the scales of quadrats (metres), sites (kilometres), and sub-regions (tens of kilometres). For the communities from the low-midlittoral and infralittoral fringe levels, most variability occurred at the scales of quadrats and sites (30-42%), followed by sub-regions (22%). Wave fetch, sea surface temperature (SST), and shore inclination were the variables that best explained community structure at the mid-midlittoral. At the low-midlittoral and infralittoral fringe, the most influential variables were related to oceanic forcing (SST, total suspended solids, particulate organic carbon, chlorophyll-a concentration) and human influence. Univariate analyses also revealed strong associations between the abundance of the main components of the communities and the predictor variables evaluated. Our results suggest that urbanised estuarine bays and coastal upwelling regimes have a strong influence on adjacent benthic communities, driving macroecological patterns in the study area. This study advances the knowledge in macroecology and biogeography of rocky shores in an understudied coastline and globally and provides valuable insights for future assessments of ecological changes resulting from unfolding human impacts.


Assuntos
Biodiversidade , Ecossistema , Humanos , Oceanos e Mares , Clorofila A , Temperatura
18.
Mar Environ Res ; 189: 106044, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37321888

RESUMO

From July to August 2022, scleractinian coral communities in China's Greater Bay Area (GBA) in the northern South China Sea (nSCS) experienced an unprecedented bleaching event, despite the fact that coral communities in this area are often considered coral thermal refugia due to their high latitude distribution. Field surveys of six sites covering three main coral distribution areas of the GBA revealed that coral bleaching occurred at all sites. Bleaching was more severe in shallow water (1-3 m) than in deep water (4-6 m), as indicated by both percent bleached cover (51.80 ± 10.04% vs. 7.09 ± 7.37%) and bleached colonies (45.86 ± 11.22% vs. 6.58 ± 6.53%). Coral genera Acropora, Favites, Montipora, Platygyra, Pocillopora, and Porites showed high susceptibility to bleaching, and Acropora and Pocillopora suffered high post-bleaching mortality. In the three areas surveyed, analysis of oceanographic data detected marine heatwaves (MHWs) during the summer, with mean intensities between 1.62 and 1.97 °C and durations between 5 and 22 days. These MHWs were primarily driven by increased shortwave radiation due to strong western Pacific Subtropical High (WPSH), combined with reduced mixing between the surface and deep upwelling waters due to reduced wind speed. Comparing with histological oceanographic data showed that the 2022 MHWs were unprecedented, and there was a significant increase in the frequency, intensity, and total days of MHWs during 1982-2022. Furthermore, the heterogeneous distribution of summer MHW characteristics indicates that the coastal upwelling may modulate the spatial distribution of summer MHWs in nSCS through its cooling effect. Overall, our study indicates that MHWs may have affected the structure of the subtropical coral communities in the nSCS, and impaired their potential as thermal refugia.


Assuntos
Antozoários , Recifes de Corais , Animais , Branqueamento de Corais , China , Água
19.
J Exp Biol ; 226(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37288645

RESUMO

Changing ocean temperatures are predicted to challenge marine organisms, especially when combined with other factors, such as ocean acidification. Acclimation, as a form of phenotypic plasticity, can moderate the consequences of changing environments for biota. Our understanding of how altered temperature and acidification together influence species' acclimation responses is, however, limited compared with that of responses to single stressors. This study investigated how temperature and acidification affect the thermal tolerance and righting speed of the girdled dogwhelk, Trochia cingulata. Whelks were acclimated for 2 weeks to combinations of three temperatures (11°C: cold, 13°C: moderate and 15°C: warm) and two pH regimes (8.0: moderate and 7.5: acidic). We measured the temperature sensitivity of the righting response by generating thermal performance curves from individual data collected at seven test temperatures and determined critical thermal minima (CTmin) and maxima (CTmax). We found that T. cingulata has a broad basal thermal tolerance range (∼38°C) and after acclimation to the warm temperature regime, both the optimal temperature for maximum righting speed and CTmax increased. Contrary to predictions, acidification did not narrow this population's thermal tolerance but increased CTmax. These plastic responses are likely driven by the predictable exposure to temperature extremes measured in the field which originate from the local tidal cycle and the periodic acidification associated with ocean upwelling in the region. This acclimation ability suggests that T. cingulata has at least some capacity to buffer the thermal changes and increased acidification predicted to occur with climate change.


Assuntos
Gastrópodes , Água do Mar , Animais , Água do Mar/química , Concentração de Íons de Hidrogênio , Temperatura , Aclimatação/fisiologia
20.
J Environ Radioact ; 264: 107188, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37130498

RESUMO

As a part of the overall safety assessment for a geological disposal of radioactive waste, models for different ecosystems are used to evaluate doses to humans and biota from possible radionuclide discharges to the biosphere. In previous safety assessments, transport modelling of radionuclides in running waters such as streams has been much simplified to the extent that only dilution of the inflow of radionuclides has been considered with no regard of any other interactions. Hyporheic exchange flow (HEF) is the flow of surface water in streams that enters the subsurface zone and, after some time, returns to the surface. HEF has been studied for decades. Hyporheic exchange and the residence time in the hyporheic zone are key parameters controlling the transport of radionuclides in a stream. Furthermore, recent studies have shown that HEF can reduce the groundwater upwelling area and increase the upwelling velocity in areas closest to the streambed water interface. In this paper, the development of an assessment model describing radionuclide transport with consideration of HEF and deep groundwater upwelling along streams is presented. An approach to parameterising the hyporheic exchange processes into an assessment model is based on a comprehensive study that has been performed in five different Swedish catchments. Sensitivity analyses are performed to explore the effect with consideration of the inflow of radionuclides with regard to HEF and deep groundwater upwelling in a safety assessment perspective. Finally, we include some suggestions for the application of the assessment model to long-term radiological safety assessments.


Assuntos
Água Subterrânea , Monitoramento de Radiação , Humanos , Rios , Ecossistema , Radioisótopos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...